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Abstract 
Reservoir rock porosity is usually determined by core analysis, but the cost of 
this method is huge, in order to establish a more accurate and stable reservoir 
porosity prediction model. Using the logging data of the existing work area, we 
optimize the neural network using the improved sine-cosine algorithm, add 
nonlinear weights to the position change of the sine-cosine algorithm (SCA) to 
correct the individual position and improve the convergence accuracy of the 
algorithm, incorporate the Levy flight to improve the SCA algorithm to 
strengthen the local search ability, and optimize the parameters of the BP neu-
ral network using the improved sine-cosine algorithm to construct the IISCA-
BP reservoir pore size prediction model. Porosity prediction model. The results 
of the IISCA-BP model are compared with the evaluation results of the BP 
model, and the model is applied to test the X oilfield in Changling Depression. 
The results show that the absolute relative error of the IISCA-BP model is 
1.996%, and the average absolute relative error is only 0.324%, which is more 
accurate and more stable than the BP model. The IISCA-BP model is well ap-
plied in the field, and the results of the scheme have higher consistency with 
the core data, so that the scheme of this paper has practicability, validity, and 
generalizability. 
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1. Introduction 

The physical properties of tight sandstone reservoirs are extremely complex, but 
there are also hydrocarbons in them, which are called tight sandstone hydrocar-
bons. The microscopic pore structure in tight sandstone is very complex, and it is 
not feasible to predict it only by applying conventional methods. The pore distri-
bution, throat size, pore-throat connectivity and seepage capacity of the reservoir 
are all crucial factors affecting the gathering of oil and gas in the reservoir, and it 
is no longer suitable for this kind of reservoir by searching for the trap in an ordi-
nary way. Therefore, for tight sandstone reservoirs, we can not just look for traps 
as usual and then look for oil and gas and favorable area prediction; first of all, we 
have to carry out a series of studies on the characteristics of microscopic pore 
structure, and the reservoir is one of the key elements of unconventional tight 
sandstone oil and gas research, to make it clear that the reservoir is rich in oil and 
gas reservoir mechanism, and ultimately look for the “sweet spot” and rich section 
[1]-[3]. We will clarify the mechanism of reservoir-rich oil and gas formation and 
finally find the “sweet spot zone” and enriched section. 

Porosity is the most important petrophysical parameter and determining it ac-
curately, quickly and cost-effectively is very important in the petroleum industry. 
Due to the extent of the field and the number of wells, the core analysis method is 
too costly and time-consuming, in addition, determining the parameter is inap-
propriate due to the wasted costs and production interruptions associated with 
this method. With the advent of Artificial Intelligence (AI) in the petroleum in-
dustry, it is increasingly used in exploration, development, production, reservoir 
engineering and management planning to speed up decision making and reduce 
cost and time. Supervised machine learning has been widely used in establishing 
relationships between complex nonlinear datasets. This type of machine learning 
algorithm shows superiority over petroleum engineering regression techniques in 
terms of prediction error, computational power and storage capacity for high-di-
mensional data. Therefore, the application of advanced software such as geologic 
logging and error neural networks is the best way to reduce cost, improve accu-
racy, and shorten time. 

BP neural networks are an emerging technique for logging evaluation that has 
been applied to many aspects of logging evaluation [1]. This technique has been 
shown to have several advantages over traditional statistical techniques. Most of 
the applications of artificial neural networks in this field are based on artificial 
neural networks with backpropagation of errors. BP neural networks are one of 
the newest, most accurate, and least costly methods for determining porosity in 
the shortest possible time using petrophysical logging data. These networks mimic 
biological neural networks and are powerful in training, testing and tuning the 
inputs and desired outputs. 

The data-driven modeling method of common BP neural network is used for 
reservoir porosity prediction research [2] [3], based on the data-driven BP neural 
network prediction model is widely used [1], but there are problems such as slow 
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convergence speed, easy to fall into the local optimum, and sensitive to the initial 
weights and thresholds, etc. The improved sine-cosine algorithm can be used to 
optimize the BP neural network prediction model to predict the reservoir poros-
ity. Non-linear weights are added to the position change of the sine-cosine algo-
rithm to correct the individual position, and the Levy flight algorithm is used to 
strengthen the local search ability and improve the convergence accuracy of the 
algorithm to avoid premature convergence. The ISCA algorithm is used to opti-
mize the BP neural network and establish the IISCA-BP reservoir porosity predic-
tion model. 

In this paper, the natural gamma number, porosity, logging sound wave and 
other parameters in the logging data are utilized to predict the reservoir porosity 
using the establishment of IISCA-BP model. The study is carried out for X oilfield 
in Changling depression, 70% of the experimental dataset is used for training, 15% 
for validation, and 15% for testing, and the model is tested. Comparison and anal-
ysis with BP model simulation results are performed [4]-[6]. 

2. Modeling 
2.1. Target Layer Situation 

X oilfield is located in Qian’an County, Jilin Province, with ground elevation rang-
ing from 130 m to 160 m, flat terrain and convenient transportation. The regional 
tectonic position is located in Changling Depression, the central depression area 
in the south of Songliao Basin. 

The main oil layer developed in this area is the Fuyu oil layer of Quan Si section, 
and the overall tectonic appearance of the top surface of Quan Si section is the 
combined tectonic background of Qian’an nasal tectonics and slope tectonics, 
forming a tectonic pattern of basement and rift valley, and the oil-bearing nature of 
reservoirs is mainly controlled by the lithology and physical properties, which has 
formed a wide range of fault-lithological and lithologic oil reservoirs (Figure 1). 
 

 
Figure 1. X oil field location map. 
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2.2. Analysis of Experimental Data 

Rock samples from the area were selected for porosity measurement and analysis. 
Figure 2 shows the statistical histogram of porosity, indicating that the porosity 
of the work area ranges from 0.8% to 11.6%, with an average value of 7.63% (Fig-
ure 2). The superiority and universality of the dataset determine the reliability and 
accuracy of the model. In order to improve the credibility and applicability of the 
model, the logging data of the X oilfield was established, which contains an exten-
sive sample database of more than 860 experimental data points involving natural 
gamma number, rock density, logging acoustic waves, and other raw data from 
the logging. The experimental data from the extensive database were utilized as 
input variables into the IISCA-BP model [7], and 70% of the experimental dataset 
was used for training, 15% for validation, and 15% for testing. 
 

 
Figure 2. Porosity distribution. 

2.3. BP Neural Network Model 

BP (Back Propagation) neural network is a kind of neural network trained accord-
ing to the algorithm backward error transfer. Given the training set, which is a 
vector composed of raw data from wells such as natural gamma number, rock 
density, logging sound wave, etc [8]…, and the reservoir porosity, the whole 
model contains an input layer (a vector set composed of raw data from wells such 
as natural gamma number, rock density, logging sound wave, etc.), a hidden layer, 
and an output layer (reservoir porosity) [9]. 

The raw data from logging, reservoir porosity data are organized, and the study 
sets the output of the neural network as the reservoir porosity, i.e., 

 ( )ˆ k
j j jy f β θ= −  (1) 

The input layer has the raw data from well logging added up to a total of a term, 
i.e., the output layer is only the reservoir porosity term [10] [11]. 

Improved sine-cosine algorithm: 
1) Standard sine-cosine algorithm 
The SCA algorithm is an optimization algorithm based on the sine cosine model 

proposed by Seyedali and Mirjalili in 2015, which starts with a set of random 
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solutions and improves the accuracy of the algorithm by continuously developing 
it under the objective function with the position update formula: 

 
( )
( )
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 (2) 

where: is the ith particle in the tth iteration in j-dimension; is the global optimum; 
r2 ranges from 0 to 2π; r3 ranges from −2 to 2; r4 ranges from −1 to 1; r1 is a linearly 
decreasing function, a is 2, t is the number of current iterations, and T is the max-
imum number of iterations. 

2) Adding non-linear weights 
Adding nonlinear weights to improve the SCA algorithm, larger weights can 

improve the global exploration ability of the algorithm, smaller weights can im-
prove the algorithm’s ability to find the optimal near the target value, improve the 
convergence accuracy of the algorithm, and better balance between the algo-
rithm’s a global exploration and local development ability [12]. The nonlinear 
weights ω are: 

 ( )
1

max max min e
t
Tω ω ω ω

−
= − −  (3) 

where: ωmax is the maximum value of weights; ωmin is the minimum value of 
weights. Let ωmax be 0.7, ωmin be 0.0003, and improve Equation (4) as follows: 
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3) Levy Flight Improvement SCA Algorithm 
Levy flight is a random step method that performs isotropic random directions 

to get an optimal direction by randomly wandering, enriching the diversity of the 
population, strengthening the algorithm’s ability to jump out of local minima, and 
preventing premature convergence. Its calculation formula is: 

 ( ) ( ): 1 3Levy s λλ λ− < <  (5) 

where: λ is the exponential parameter; s is the randomization step. 

1s
v β

µ
=  where β is 1.5 and the parameters μ, ν conform to normally distrib-

uted random numbers N(0,), N(0,) respectively. 
The parameter variance is: 
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where: Γ is the Gamma function. 
The position update equation is improved as: 

 ( )1t t
ij ijX X Levyα λ+ = + ⊗  (7) 
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where: α is usually taken as 1. 
ISCA-BP modeling [13]: 
Improved Sine Cosine Algorithm (ISCA) is used to optimize the initial state 

weights and thresholds of the neural network to construct the prediction model 
of reservoir porosity. The spatial dimension D is: 
 D nm ml m l= + + +  (8) 

The value of the SCA algorithm’s initial moment adaptation is determined by 
Equation (9). The optimal solution is when the function value satisfies the set 
value [14] [15]. 

 ( )2
1

1Fitness Z
s ss y y

Z =
′= −∑  (9) 

where: Fitness is the fitness function value; Z is the number of training samples; 

sy  is the output value; sy′  is the actual output value. 
Using the improved position update Equation (7), the positions of the particles 

are updated. The optimal weights and thresholds are substituted into the BP neu-
ral network to obtain the reservoir porosity prediction model. 

3. Model Validation 

The input variables of IISCA-BP model are natural gamma number, rock density, 
raw data of logging sonic logging, and the output variable is reservoir porosity, 
and the parameters of the I ISCA algorithm are set: the population size is 60, the 
dimensionality is 276, the number of nodes in the input layer is 4, the number of 
nodes in the output layer is 1, and the number of nodes in the implied layer is 11. 
In this case, the selection of the implied layer is obtained by comparing the train-
ing error of the training samples under different implied layers [16]. In order to 
determine the number of hidden layer nodes, the mean square error (MSE) of the 
prediction results and the coefficient of determination (R2) are used as the evalu-
ation indexes, and the smaller the value of MSE and the larger the value of R2 are, 
which indicates that the prediction results are more accurate. The MSE and R2 are 
counted for the case of 4 - 14 nodes, respectively [17], and the formulas for MSE 
and R2 are shown below: 
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Ten repetitive runs were performed with the number of nodes in each node 
determined and the results are shown in Figure 3. The experimental results show 
that the training error is minimized when the number of nodes in the hidden layer 
is 11, so the number of nodes in the hidden layer is taken as 11. 

The performance of the IISCA-BP model for the three processes in addition to 
all measured data is given in Figure 4. These results show that the measured and 
predicted reservoir porosity values are in good agreement and confirm the high 
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capability of the developed IISCA-BP model for reservoir porosity prediction. In 
order to facilitate the comparison between the BP model and the IISCA-BP model, 
ARD (Absolute Relative Error) and AARD (Average Absolute Relative Error) are 
introduced in this paper to analyze the error and evaluate the performance of each 
model. The model prediction errors are shown in Figure 5. From the errors of the 
prediction models of reservoir porosity in Figure 5, it can be seen that the IISCA-
BP model has the highest prediction accuracy, with an absolute relative error of 
1.996% and an average absolute relative error of 0.324%. And the model-pro-
grammed calculation is simpler and faster can be promoted. 
 

 
Figure 3. Performance of ISCA algorithm with different number of nodes. 

 

 
Figure 4. Performance of ISCA-BP reservoir porosity prediction model. 
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Figure 5. Error comparison of reservoir porosity prediction models. 

4. Conclusions 

1) Optimization of BP model for reservoir porosity prediction based on IISCA 
algorithm. The results show that the IISCA algorithm is an algorithm with stronger 
optimization performance. On this basis, a reservoir porosity model based on 
IISCA-BP was established. 

2) By comparing the simulation results with the BP model, the absolute relative 
error of the model is 1.996%, and the average absolute relative error is only 
0.324%, which is the smallest error. The simulated porosity of the IISCA-BP res-
ervoir porosity prediction model has a higher degree of agreement with the po-
rosity of the core. The IISCA-BP model has a stronger generalization ability and 
higher prediction accuracy. 
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